

Letters

Correction to "Rigorous Analysis of the Step Discontinuity in a Planar Dielectric Waveguide"

TULLIO E. ROZZI

In Fig. 7 of the above paper,¹ the label $n_2 K_0 D = 1$ is incorrect. It should read $(n_1^2 - n_2^2)^{1/2} = 2$.

Manuscript received February 20, 1980.
 The author is with the Department of Engineering and Electronics, The University of Liverpool, Liverpool L69 3BX England.
¹T. E. Rozzi, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 738-746, Oct. 1978.

Comment on "Broad-Band Coupling to High- Q Resonant Loads"

S. R. BORGAONKAR AND S. N. RAO

The authors of the above paper¹ have suggested the use of a quarter-wavelength transmission line for coupling a series resonant load to a resistive source over a wide band. In order to approximately achieve broad-band coupling, the authors have suggested a procedure wherein the insertion loss is expanded in a Taylor's series about the load-resonance frequency and the normalized characteristic impedance z_L of the line is selected by equating to zero the coefficient of the second term in the series. But the expression derived by them for the coefficient m_2 in (14) of the second term of the series is wrong because the equation $m_2 = 0$ when the load Q is zero (for a resistive load) does not give the familiar result of $z_L = 1$ or r , where r is the normalized load resistance. The error is due to their approximating $\sin \theta$ by unity instead of by $[1 - (\pi^2 \Delta^2 / 8)]$ where θ and Δ are as defined in their paper. The correct expression for m_2 should read

$$m_2 = L_R^{-1} \left[\pi^2 z_L^4 + 8\pi r Q z_L^3 - \pi^2 (r^2 + 1) z_L^2 - 8\pi r Q z_L + r^2 (\pi^2 - 16Q^2) \right]$$

where L_R is as defined in [1]. The equation $m_2 = 0$ gives two positive real roots for z_L when $0 < Q < (\pi/4)$ and one positive real root when $(\pi/4) < Q$. The values of z_L obtained from equating the above m_2 to zero are found to be lower than those obtainable by using (14), the error in z_L being larger at smaller values of Q .

Manuscript received May 31, 1979.
 The authors are with the Indian Institute of Science, Bangalore, India.
¹T. M. Reeder and W. R. Sperry, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 453-458, July 1972.